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Strategic Voting

Situations where privately informed agents collectively make a
decision without using transfers:

I Electing a candidate in elections.

I Various departments of a university jointly choosing a hiring
policy.

I Organizing committee of a conference choosing a speaker
from a list of speakers.

I Setting the temperature of a classroom.



Implications of No Transfers

Designer cannot transfer utility (by payments) from agents.

Incentive compatibility becomes too strong a requirement -
particularly with dominant strategy incentive compatibility (also
called, strategy-proofness in this literature).

Strategy-proofness will mean much of the aggregated private
information of agents is not used in many environment. Two
extreme illustrations:

I dictatorship

I median of tops
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Why Begin Here?

Assumptions make sense in a variety of environments.

The Benchmark Model.

Implications of domain restrictions (smaller type space) easily spelt
out.
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The Unrestricted Domain Model

I A set of agents N = {1, . . . , n}.
I A set of alternatives A = {a, b, . . .} - assume A to be finite.

I Type of agent i : strict ordering Pi of A.

I Domain or type space of each agent: set of all strict orderings
of A, denoted by P.



Social Choice Functions (scfs)

A social choice function is a map f : Pn → A.

An scf is a direct mechanism - without loss of generality to focus
on direct mechanisms.

Note no randomization.
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Two Alternative Example

P1 P2 P3

a b a
b a b

Table: Majority scf with two alternatives.



Condorcet Paradox - Three Alternatives

P1 P2 P3

a b c
b c a
c a b

Table: Condorcet



Plurality Voting

P1 P2 P3 P ′1 P ′2 P ′3
a b a a b c
b c c b c a
c a b c a b

Table: Plurality scf.



Borda Voting

P1 P2 P3 P ′1 P ′2 P ′3
a b b c b b
c c c a c c
b a a b a a

Table: Borda scf.



Strategy-proofness

Reporting true type is a weakly dominant strategy.

Definition
An scf f is strategy-proof if for every i ∈ N, for every P−i ∈ P−i ,
for every Pi ∈ P, there exists no P ′i ∈ P such that

f (P ′i ,P−i ) Pi f (Pi ,P−i ).



Strategy-proofness

Reporting true type is a weakly dominant strategy.

Definition
An scf f is strategy-proof if for every i ∈ N, for every P−i ∈ P−i ,
for every Pi ∈ P, there exists no P ′i ∈ P such that

f (P ′i ,P−i ) Pi f (Pi ,P−i ).



Example - Two Alternatives

P1 P2 P3

a b a
b a b

Table: Majority scf with two alternatives.



Plurality scf

P1 P2 P3 P ′1 = P1 P ′2 = P2 P ′3
a b c a b b
b c a b c a
c a b c a c

Table: Plurality scf is manipulable.

Plurality scf belongs to a broad class of scfs called scoring rules
that are all manipulable.
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Strategy-proof scfs

Definition
An scf f is a constant scf if there exists an alternative a ∈ A such
that at every profile P ∈ P, we have f (P) = a.

Notation: Pi (k): k-th ranked alternative according to Pi .

Definition
An scf f is a dictatorship scf if there exists an agent i ∈ N such
that at every profile P ∈ P, we have f (P) = Pi (1).
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Monotonicity

For any alternative a ∈ A, let B(a,Pi ) be the set of alternatives
below a in preference ordering Pi . Formally,
B(a,Pi ) := {b ∈ A : aPib}.

Definition
A social choice function f is monotone if for any two profiles P
and P ′ with B(f (P),Pi ) ⊆ B(f (P),P ′i ) for all i ∈ N, we have
f (P) = f (P ′).



Illustrating Monotonicity

P1 P2 P3 P ′1 P ′2 P ′3
x b x x x c
a x c a a a
b a a c c x
c c b b b b

Table: Two valid profiles for monotonicity

Note: no restriction is imposed on scf at profiles other than such
monotonic transformation profiles.
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Equivalence to Monotonicity

Theorem
Every strategy-proof scf satisfies monotonicity. Conversely, in the
unrestricted domain, every monotone scf is strategy-proof.



Strategy-proof implies monotonicity

Start from P ≡ (P1,P2, . . . ,Pn) with f (P) = a and
P ′ ≡ (P ′1,P

′
2, . . . ,P

′
n). Assume that B(a,Pi ) ⊆ B(a,P ′i ) for all

i ∈ N.

Consider P ′′ ≡ (P ′1,P2, . . . ,Pn). Suppose f (P ′′) = b 6= a.

If aP1b then aP ′1b. In that case, agent 1 manipulates from P ′1 to
P1.

If bP1a then agent 1 manipulates from P1 to P ′1.



Monotonicity implies strategy-proofness

Suppose agent i can manipulate at preference profile P by a
preference ordering P ′i .

Suppose f (Pi ,P−i ) = a and f (P ′i ,P−i ) = b, and by assumption
bPia.

Consider a preference profile P ′′ ≡ (P ′′i ,P−i ), where P ′′i is any
preference ordering satisfying P ′′i (1) = b and P ′′i (2) = a.

By monotonicity, f (P ′′) = f (P ′) = b and f (P ′′) = f (P) = a



Other Normative/Technical Properties

Definition
An scf f is unanimous if for every P ∈ Pn with
P1(1) = P2(1) = . . . = Pn(1), we have f (P) = P1(1).

Definition
An scf f is onto if for every a ∈ A, there exists a P ∈ Pn such that
f (P) = a.

Definition
An scf f is Pareto efficient if for every P ∈ Pn and for every
a ∈ A, if there exists b ∈ A such that bPia for all i ∈ N, then
f (P) 6= a.
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Gibbard-Satterthwaite Theorem

Theorem (Gibbard 1973, Satterthwaite 1975)

Suppose |A| ≥ 3 and f : Pn → A is an scf. Then, f satisfies
unanimity and strategy-proofness if and only if it is a dictatorship.

I Does not hold if |A| = 2.

I Possible to state: suppose range of f is at least three.

I May not hold if domain is smaller than P - more later.

I Allowing for indifferences is fine as long as we allow for strict
orderings - though dictatorship may no longer be
strategy-proof.
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Dictatorship with Indifferences

P1 P2 P ′1 P ′2
x , a b x , a x
b x b b
c a c a

c c

Table: Two valid profiles for monotonicity



Proof Technique

Many proofs ...

I Earlier (original) proofs were based on using Arrow’s
impossibility theorem.

I Later many independent proofs - Barbera, Reny, Benoit,
Svensson.

I Proof for two agents case - then do induction on number of
agents. (Proof due to Sen (2001))



Two Agent Proof Idea

Lemma (Top Selection Lemma)

Suppose |A| ≥ 3 and N = {1, 2}. Suppose f is unanimous and
strategy-proof social choice function. Then for every preference
profile P, f (P) ∈ {P1(1),P2(1)}.

P1 P2 P1 P ′2 P ′1 P ′2 P ′1 P2

a b a b a b a b
· · · a b a b ·
· · · · · · · ·

Table: Preference profiles.
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Dictatorship Lemma

Lemma
Suppose |A| ≥ 3 and N = {1, 2}. Suppose f is unanimous and
strategy-proof social choice function. Consider a profile P such
that P1(1) = a 6= b = P2(1). If f (P) = Pi (1) for some i ∈ N, then
f (P ′) = Pi (1) for all P ′.



Case 1 - c = a, d = b

Tops-only property.

P1 P2 P ′1 P ′2 P̂1 P̂2

a b a b a b
· · · · b a
· · · · · ·

Table: Preference profiles required in Case 1.

Monotonicity from two different profiles.
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Case 2 - c 6= a, d = b

P1 P2 P ′1 P ′2 P̂1 P2

a b c 6= a d = b c b
· · · · a ·
· · · · · ·

Table: Preference profiles required in Case 2.

Case 1 from 2nd to third profile and strategy-proofness from first
to third profile.

Other cases similarly resolved except for one.
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Case - c = b, d = a

P1 P2 P ′1 P ′2 P̂1 P ′2 P̂ ′1 P ′2
a b c = b d = a b a x a
· · · · x · · ·
· · · · · · · ·

Table: Preference profiles required in Case 6.

First to fourth profile is handled by earlier cases. Other profiles by
Case 1 and strategy-proofness.



Case - c = b, d = a

P1 P2 P ′1 P ′2 P̂1 P ′2 P̂ ′1 P ′2
a b c = b d = a b a x a
· · · · x · · ·
· · · · · · · ·

Table: Preference profiles required in Case 6.

First to fourth profile is handled by earlier cases. Other profiles by
Case 1 and strategy-proofness.



Idea for Induction

I From a n-agent scf, construct a (n − 1)-agent scf by
considering outcome of the scf where two agents have the
same preference.

I Show that the (n − 1) agent scf is unanimous and
strategy-proof, and conclude dictatorship of it.

I Use this to argue that the original scf is also a dictatorship -
this step will require that n ≥ 3 (hence, induction must start
at n = 2).



How to Escape Impossibility?

Domain Restriction. Two common ways to do it:

I Type space is restricted.

I Randomization is considered - outcomes are lotteries. Ranking
of lotteries usually done in a specific way - again leading to
domain restriction.

Weaken solution concept.
Weaken rationality - agents may not manipulate to all possible
types.
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Single Peaked Domain

In many settings, not all possible strict orderings may be a type.

Alternatives are often ordered - days of a week, locations along a
street, readings of temperature, political ideology of candidates.

Agents have ideal point on the ordered set and their preference for
alternatives become worse as they go away from the ideal -
quasiconcave.

A firm wants delivery on Wednesday as ideal and as one goes away
from Wednesday, his preferences become worse - so he never likes
Friday to Thursday.



Number of Single Peaked Orderings

a � b � c � d .

a b b b c c c d
b a c c d b b c
c c d a b a d b
d d a d a d a a

Table: Single-peaked preferences

Note: No restriction on alternatives on either side of the peak.
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A Formal Definition

A preference ordering Pi of agent i is single peaked with respect
to � if for all b, c ∈ A,

I with b � c � Pi (1) we have cPib, and

I with Pi (1) � b � c we have bPic .



Possibility in Single Peaked Domain

Consider the following SCF f : for every preference profile P, f (P)
is the minimal element with respect to � among
{P1(1),P2(1), . . . ,Pn(1)}.

Why is this strategy-proof?

I Agent whose peak coincides with the chosen alternative has
no incentive to deviate.

I If some other agent deviates, then the only way to change the
outcome is to place his peak to the left of chosen outcome.

I But that will lead to an outcome which is even more left to
his peak, which he prefers less than the current outcome.
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A Class of Possibilities

Pick an integer k ∈ {1, . . . , n}. In every preference profile, the SCF
picks the k-th lowest peak according to �.

I Note that those agents whose peak coincides with the k-th
lowest peak have no incentive to manipulate.

I Consider an agent i , which lies to the left of k-th lowest peak.
The only way he can change the outcome is to move to the
right of the k-th lowest peak.

I In that case, an outcome which is even farther away from his
peak will be chosen. According to single-peaked preferences,
he prefers this less.

I A symmetric argument applies to the agents who are on to
the right of k-th lowest peak.
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Median Voter SCF

Definition
A social choice function f : Sn → A is a median voter social
choice function if there exists B = (y1, . . . , yn−1) such that
f (P) = median(B,P1(1),P2(1), . . . ,Pn(1)) for all preference
profiles P. The alternatives in B are called the peaks of phantom
voters.

Locating (n − 1) phantom peaks at different alternatives give
different scfs.
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Examples of Median Voter SCF

Suppose a � b � c and with three agents. Put both the phantoms
at a. Then, the scf chooses the minimum of the peaks.

Suppose one phantom is at a and the other is at c . Then, it
chooses the median of the voter peaks.

Suppose both the phantoms are at b, then unless there is
unanimity, we choose b.



Strategy-proof Median Voter

Theorem
Every median voter social choice function is strategy-proof.

I Agent i has no incentive to manipulate if Pi (1) = f (P) = a.

I Suppose agent i ’s peak is to the left of a.

I The only way he can change the outcome is by changing the
median, which he can only do by changing his peak to the
right of a.

I But that will shift the median to the right of a which he does
not prefer to a. So, he cannot manipulate.

I A symmetric argument applies if i ’s peak is to the right of a.
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Anonymous scf

Identity of agents do not matter - dictatorship is not anonymous.

Definition
A social choice function f : Sn → A is anonymous if for every
profile P and every permutation σ such that Pσ ∈ Sn, we have
f (Pσ) = f (P).



Illustration

P1 P2 P3 P ′1 P ′2 P ′3
x b b b x b
a a a a a a
b x c c b x
c c x x c c

Table: Anonymity



Characterization Result

Theorem
A strategy-proof social choice function is unanimous and
anonymous if and only if it is the median voter social choice
function.



Condorcet Winner Exists and Strategy-proof

I With odd number of agents, an alternative exists that beats
every other alternative in a pair-wise majority.

I An scf choosing such a Condorcet winner is strategy-proof.

I It is a median voter scf where phantoms (even in number) are
equally distributed between the two extreme alternatives and
Condorcet winner is the median of the agent peaks.



Concluding Thoughts

I Strategy-proofness is too strong in the unrestricted domain.

I Long literature to characterize possibility in restricted domains
- possibility domains are variants of single peaked domain.

I Private good allocation brings domain restrictions and
indifferences - e.g., matching.

I Randomization also brings domain restrictions - more
possibilities.

I Considering local strategy-proofness instead of
strategy-proofness brings nothing new.


